SQL 刷题

1148. 文章浏览 I

Views 表:

1
2
3
4
5
6
7
8
9
10
11
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| article_id | int |
| author_id | int |
| viewer_id | int |
| view_date | date |
+---------------+---------+
此表可能会存在重复行。(换句话说,在 SQL 中这个表没有主键)
此表的每一行都表示某人在某天浏览了某位作者的某篇文章。
请注意,同一人的 author_id 和 viewer_id 是相同的。

请查询出所有浏览过自己文章的作者

结果按照 id 升序排列。

查询结果的格式如下所示:

示例 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
输入:
Views 表:
+------------+-----------+-----------+------------+
| article_id | author_id | viewer_id | view_date |
+------------+-----------+-----------+------------+
| 1 | 3 | 5 | 2019-08-01 |
| 1 | 3 | 6 | 2019-08-02 |
| 2 | 7 | 7 | 2019-08-01 |
| 2 | 7 | 6 | 2019-08-02 |
| 4 | 7 | 1 | 2019-07-22 |
| 3 | 4 | 4 | 2019-07-21 |
| 3 | 4 | 4 | 2019-07-21 |
+------------+-----------+-----------+------------+

输出:
+------+
| id |
+------+
| 4 |
| 7 |
+------+

解法:

1
2
3
4
5
6
7
SELECT
author_id AS 'id'
FROM
Views
WHERE author_id = viewer_id
GROUP BY id
ORDER BY id
1
select distinct author_id as id from Views where author_id = viewer_id order by id

585. 2016年的投资

Insurance 表:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
+-------------+-------+
| Column Name | Type |
+-------------+-------+
| pid | int |
| tiv_2015 | float |
| tiv_2016 | float |
| lat | float |
| lon | float |
+-------------+-------+
pid 是这张表的主键(具有唯一值的列)。
表中的每一行都包含一条保险信息,其中:
pid 是投保人的投保编号。
tiv_2015 是该投保人在 2015 年的总投保金额,tiv_2016 是该投保人在 2016 年的总投保金额。
lat 是投保人所在城市的纬度。题目数据确保 lat 不为空。
lon 是投保人所在城市的经度。题目数据确保 lon 不为空。

编写解决方案报告 2016 年 (tiv_2016) 所有满足下述条件的投保人的投保金额之和:

  • 他在 2015 年的投保额 (tiv_2015) 至少跟一个其他投保人在 2015 年的投保额相同。
  • 他所在的城市必须与其他投保人都不同(也就是说 (lat, lon) 不能跟其他任何一个投保人完全相同)。

tiv_2016 四舍五入的 两位小数

查询结果格式如下例所示。

示例 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
输入:
Insurance 表:
+-----+----------+----------+-----+-----+
| pid | tiv_2015 | tiv_2016 | lat | lon |
+-----+----------+----------+-----+-----+
| 1 | 10 | 5 | 10 | 10 |
| 2 | 20 | 20 | 20 | 20 |
| 3 | 10 | 30 | 20 | 20 |
| 4 | 10 | 40 | 40 | 40 |
+-----+----------+----------+-----+-----+
输出:
+----------+
| tiv_2016 |
+----------+
| 45.00 |
+----------+
解释:
表中的第一条记录和最后一条记录都满足两个条件。
tiv_2015 值为 10 与第三条和第四条记录相同,且其位置是唯一的。

第二条记录不符合任何一个条件。其 tiv_2015 与其他投保人不同,并且位置与第三条记录相同,这也导致了第三条记录不符合题目要求。
因此,结果是第一条记录和最后一条记录的 tiv_2016 之和,即 45 。

解法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
SELECT ROUND(SUM(tiv_2016), 2) AS tiv_2016
FROM Insurance
WHERE tiv_2015 IN (
SELECT tiv_2015
FROM Insurance
GROUP BY tiv_2015
HAVING COUNT(*) > 1
)
AND (lat, lon) NOT IN (
SELECT lat, lon
FROM Insurance
GROUP BY lat, lon
HAVING COUNT(*) > 1
)

584. 寻找用户推荐人

表: Customer

1
2
3
4
5
6
7
8
9
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| id | int |
| name | varchar |
| referee_id | int |
+-------------+---------+
在 SQL 中,id 是该表的主键列。
该表的每一行表示一个客户的 id、姓名以及推荐他们的客户的 id。

找出那些 没有被 id = 2 的客户 推荐 的客户的姓名。

任意顺序 返回结果表。

结果格式如下所示。

示例 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
输入: 
Customer 表:
+----+------+------------+
| id | name | referee_id |
+----+------+------------+
| 1 | Will | null |
| 2 | Jane | null |
| 3 | Alex | 2 |
| 4 | Bill | null |
| 5 | Zack | 1 |
| 6 | Mark | 2 |
+----+------+------------+
输出:
+------+
| name |
+------+
| Will |
| Jane |
| Bill |
| Zack |
+------+

解法:

1
select name from Customer where referee_id is null or referee_id != 2;

586. 订单最多的客户

表: Orders

1
2
3
4
5
6
7
8
+-----------------+----------+
| Column Name | Type |
+-----------------+----------+
| order_number | int |
| customer_number | int |
+-----------------+----------+
在 SQL 中,Order_number是该表的主键。
此表包含关于订单ID和客户ID的信息。

查找下了 最多订单 的客户的 customer_number

测试用例生成后, 恰好有一个客户 比任何其他客户下了更多的订单。

查询结果格式如下所示。

示例 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
输入: 
Orders 表:
+--------------+-----------------+
| order_number | customer_number |
+--------------+-----------------+
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 4 | 3 |
+--------------+-----------------+
输出:
+-----------------+
| customer_number |
+-----------------+
| 3 |
+-----------------+
解释:
customer_number 为 '3' 的顾客有两个订单,比顾客 '1' 或者 '2' 都要多,因为他们只有一个订单。
所以结果是该顾客的 customer_number ,也就是 3 。

解法:

1
select customer_number from Orders group by customer_number order by count(customer_number) desc limit 1;
1
2
3
4
5
6
7
8
select customer_number
from orders
group by customer_number
having count(order_number)>=all(
select count(order_number)
from orders
group by customer_number
)

610. 判断三角形

表: Triangle

1
2
3
4
5
6
7
8
9
+-------------+------+
| Column Name | Type |
+-------------+------+
| x | int |
| y | int |
| z | int |
+-------------+------+
在 SQL 中,(x, y, z)是该表的主键列。
该表的每一行包含三个线段的长度。

对每三个线段报告它们是否可以形成一个三角形。

任意顺序 返回结果表。

查询结果格式如下所示。

示例 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
输入: 
Triangle 表:
+----+----+----+
| x | y | z |
+----+----+----+
| 13 | 15 | 30 |
| 10 | 20 | 15 |
+----+----+----+
输出:
+----+----+----+----------+
| x | y | z | triangle |
+----+----+----+----------+
| 13 | 15 | 30 | No |
| 10 | 20 | 15 | Yes |
+----+----+----+----------+

解法:

1
2
3
4
5
6
select x, y, z, 
case
when x + y > z and y + z > x and z + x > y then 'Yes'
else 'No'
end as triangle
from Triangle;

196. 删除重复的电子邮箱

表: Person

1
2
3
4
5
6
7
8
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| id | int |
| email | varchar |
+-------------+---------+
id 是该表的主键列(具有唯一值的列)。
该表的每一行包含一封电子邮件。电子邮件将不包含大写字母。

编写解决方案 删除 所有重复的电子邮件,只保留一个具有最小 id 的唯一电子邮件。

(对于 SQL 用户,请注意你应该编写一个 DELETE 语句而不是 SELECT 语句。)

(对于 Pandas 用户,请注意你应该直接修改 Person 表。)

运行脚本后,显示的答案是 Person 表。驱动程序将首先编译并运行您的代码片段,然后再显示 Person 表。Person 表的最终顺序 无关紧要

返回结果格式如下示例所示。

示例 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
输入: 
Person 表:
+----+------------------+
| id | email |
+----+------------------+
| 1 | john@example.com |
| 2 | bob@example.com |
| 3 | john@example.com |
+----+------------------+
输出:
+----+------------------+
| id | email |
+----+------------------+
| 1 | john@example.com |
| 2 | bob@example.com |
+----+------------------+
解释: john@example.com重复两次。我们保留最小的Id = 1。

解法:

1
2
3
4
5
delete p1
from Person p1
join Person p2
on p1.email = p2.email
and p1.id > p2.id;

197. 上升的温度

表: Weather

1
2
3
4
5
6
7
8
9
10
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| id | int |
| recordDate | date |
| temperature | int |
+---------------+---------+
id 是该表具有唯一值的列。
没有具有相同 recordDate 的不同行。
该表包含特定日期的温度信息

编写解决方案,找出与之前(昨天的)日期相比温度更高的所有日期的 id

返回结果 无顺序要求

结果格式如下例子所示。

示例 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
输入:
Weather 表:
+----+------------+-------------+
| id | recordDate | Temperature |
+----+------------+-------------+
| 1 | 2015-01-01 | 10 |
| 2 | 2015-01-02 | 25 |
| 3 | 2015-01-03 | 20 |
| 4 | 2015-01-04 | 30 |
+----+------------+-------------+
输出:
+----+
| id |
+----+
| 2 |
| 4 |
+----+
解释:
2015-01-02 的温度比前一天高(10 -> 25)
2015-01-04 的温度比前一天高(20 -> 30)

解法:

1
2
3
4
select distinct w.id from Weather w
join Weather w2
on w.recordDate = Date_add(w2.recordDate, Interval 1 day)
where w.temperature > w2.temperature

1527. 患某种疾病的患者

患者信息表: Patients

1
2
3
4
5
6
7
8
9
10
+--------------+---------+
| Column Name | Type |
+--------------+---------+
| patient_id | int |
| patient_name | varchar |
| conditions | varchar |
+--------------+---------+
在 SQL 中,patient_id (患者 ID)是该表的主键。
'conditions' (疾病)包含 0 个或以上的疾病代码,以空格分隔。
这个表包含医院中患者的信息。

查询患有 I 类糖尿病的患者 ID (patient_id)、患者姓名(patient_name)以及其患有的所有疾病代码(conditions)。I 类糖尿病的代码总是包含前缀 DIAB1

任意顺序 返回结果表。

查询结果格式如下示例所示。

示例 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
输入:
Patients表:
+------------+--------------+--------------+
| patient_id | patient_name | conditions |
+------------+--------------+--------------+
| 1 | Daniel | YFEV COUGH |
| 2 | Alice | |
| 3 | Bob | DIAB100 MYOP |
| 4 | George | ACNE DIAB100 |
| 5 | Alain | DIAB201 |
+------------+--------------+--------------+
输出:
+------------+--------------+--------------+
| patient_id | patient_name | conditions |
+------------+--------------+--------------+
| 3 | Bob | DIAB100 MYOP |
| 4 | George | ACNE DIAB100 |
+------------+--------------+--------------+
解释:Bob 和 George 都患有代码以 DIAB1 开头的疾病。

解法:

1
2
select patient_id, patient_name, conditions from Patients
where conditions like 'DIAB1%' or conditions like '% DIAB1%';

1907. 按分类统计薪水

表: Accounts

1
2
3
4
5
6
7
8
+-------------+------+
| 列名 | 类型 |
+-------------+------+
| account_id | int |
| income | int |
+-------------+------+
在 SQL 中,account_id 是这个表的主键。
每一行都包含一个银行帐户的月收入的信息。

查询每个工资类别的银行账户数量。 工资类别如下:

  • "Low Salary":所有工资 严格低于 20000 美元。
  • "Average Salary"包含 范围内的所有工资 [$20000, $50000]
  • "High Salary":所有工资 严格大于 50000 美元。

结果表 必须 包含所有三个类别。 如果某个类别中没有帐户,则报告 0

任意顺序 返回结果表。

查询结果格式如下示例。

示例 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
输入:
Accounts 表:
+------------+--------+
| account_id | income |
+------------+--------+
| 3 | 108939 |
| 2 | 12747 |
| 8 | 87709 |
| 6 | 91796 |
+------------+--------+
输出:
+----------------+----------------+
| category | accounts_count |
+----------------+----------------+
| Low Salary | 1 |
| Average Salary | 0 |
| High Salary | 3 |
+----------------+----------------+
解释:
低薪: 有一个账户 2.
中等薪水: 没有.
高薪: 有三个账户,他们是 3, 6和 8.

错误解法(不包含数量为 0 的类别):

1
2
3
4
5
6
7
8
9
10
11
12
select
case
when income < 20000 then 'Low Salary'
when income between 20000 and 50000 then 'Average Salary'
when income > 50000 then 'High Salary'
end as category, count(*) as accounts_count from Accounts
group by
case
when income < 20000 then 'Low Salary'
when income between 20000 and 50000 then 'Average Salary'
when income > 50000 then 'High Salary'
end;

正确解法:

1
2
3
4
5
6
7
8
select 'Low Salary' category,count(*) accounts_count from Accounts
where income<20000
union
select 'Average Salary' category,count(*) accounts_count from Accounts
where income between 20000 and 50000
union
select 'High Salary' category,count(*) accounts_count from Accounts
where income>50000